Like us on Facebook!





Company Blog

LUMISTAR INFRARED IMAGING NEWS

By Lumistar's Chief Scientist

February 15, 2015

Humans Can See Infrared Light Thought Impossible

Lumistar - Blog - Infrared Vision

Researchers at Washington University in St. Louis, Missouri, were able to get subjects to see in the infrared with the naked eye. Researchers used infrared laser beams (pure focused infrared beams) at different wavelengths to conduct their experiments. The key to their safety in these experiments and ultimately it’s usefulness in medicine was using a less powerful infrared laser beam, not one that can damage the retina like conventional laser pointers used in lecture halls or as toys.

There were reports in the past of humans could see infrared light in scientific literature during experiments, but they were unexplained and thus the myth remained human retinas were incapable of seeing ‘invisible’ infrared. For researchers at Washington U. to conduct their experiments, laser pulses of different duration were delivered with the same number of photons, defined as the particles that make up light whether visible or invisible like infrared. Their findings: if the infrared laser pulse was short enough to ‘stack’ the photons picked up by the photoreceptors in the retina, two photons hitting the retina instead of one, it caused the invisible wavelength to mimic a visible wavelength half it’s strength, becoming a wavelength visible to the naked eye. The key is to get the beam in the visible spectrum or the ‘rainbow’ which is in the 400-700 nanometer range. At near infrared (NIR) 1,000 nanometer wavelength, with two photon hits, it became a 500 nanometer photon thus in the visible wavelength range. By making the pulses short in order to bombard the retina the subjects didn’t see ‘pulses’ but instead saw a duration of light. In standard vision, only one photon is absorbed at a time by your photoreceptors on the back of the retina, which then create a molecule called a photpigment read by the nerves leading to the brain creating vision.  The benefit to all this is whereas using visible-wavelength lasers might damage the retina in potential medical treatments, this technology will develop new tools to examine the healthy eye by stimulating specific parts of the retina to see if it is properly functioning. By doing so doctors can learn more about our eye’s structure and function not only in healthy eyes but in people with retinal diseases such as macular degeneration.

In case you were wondering, all 30 volunteers described infrared as very short pulses of pale green light and longer pulses of reddish light.

Learn More Here





December 15, 2014

Thermal Imaging Shows Penguins’ Unusual Phenomena

Courtesy of Université de Strasbourg and Centre National de la Recherche Scientifique (CNRS), Strasbourg, France

Courtesy of Université de Strasbourg and Centre National de la Recherche Scientifique (CNRS), Strasbourg, France

Courtesy of Université de Strasbourg and Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
After studying Emperor penguins using thermal imaging cameras, scientists from Glasgow University in Glasgow, UK discovered that these Antarctic birds keep warm by an unusual phenomena where temperatures can reach -40C. Studying penguins In the French-claimed sector of Antarctica named Adélie Land, scientists  discovered that penguin’s feathers or plumage are colder than that of the surrounding air. As a result thermal radiation, heat from the warm bodies is lost to the colder air, is minimized. Penguins, similar to humans at 37C, maintain core temperature of approximately 36.9C but only their eyes, beaks, and feet were warmer than the surrounding air, and only their eyes are above freezing. Similar to fighting fire with fire, Emperor penguins fight cold with cold. Thermal Imaging confirmed that penguins coats are four degrees Celsius colder than surrounding air. Penguins are able to accomplish this by having their coats face the upper atmosphere which is 20C colder than the surrounding air. For example, according to Glasgow scientists, a similar phenomenon can be observed if you park your car in the open on a cold night. Usually you will only find frost to have formed on the roof and windscreen but the sides do not ‘view’ the sky and therefore are radiating to relatively warmer surroundings. Penguins plumage is also so insulated it is equivalent to humans wearing two ski suits. Computer simulations confirmed their findings.

Learn More Here





October 15, 2014

Physicists Harvest Infrared Light Into Energy

Lumistar-Blog-Infrared Earth

Possibly as a future add-on to solar panels for harvesting energy at night, physicists at Harvard University have found a way to capture thermal infrared energy that escapes every night into space by the very act of allowing it to escape.  By using the principal of hot and cold differential to harness electrons into voltaic current, similar to how radioisotope thermoelectric nuclear batteries are used on artificial satellites, the thermal power generator would capture the infrared photonic energy with the use of a “hot” plate, as warm as the Earth, with a “cold” plate on top made from a material that would quickly radiate the thermal infrared electromagnetic photonic wavelengths back to the cold vacuum of space.  During a pilot study in Lamont, Oklahoma, the researchers have calculated that the heat difference between the plates could generate a few watts per square meter, day and night. This natural radiation happens every night with some of the infrared energy being trapped by our atmosphere to keep the planet from being as cold as space, thus named the greenhouse effect. With the sun bombarding the Earth with infrared heat that escapes every day and night continuously back to space this is clean energy that can eventually be used. Scientists hope to create a working model and become further efficient producing additional watts by using nanotechnology making efficiency possible.

Learn More Here





August 15, 2014

Thermal Cameras Catch Heat During Social Interactions

LumistarBlog-ThermalFace

Using thermal imaging cameras, researchers at the University of St Andrews (St Andrews, UK) Perception Lab, have found that when heterosexual women interact socially with men, it causes a noticeable rise in the temperature of their faces. University scientists studied temperature changes in only women for this report.  The study was conducted to see if interpersonal social contact can elicit facial temperature changes as studies in the past dealt with other forms of emotional arousal such as fear and stress. Thermal responses were measured using a thermal imager with thermal sensitivity (NETD): less than 80 mK, 1 frame per 75 s. Object emissivity was set at 0.98, the standard value for skin. Infrared images were taken during a standardized interaction with a same- and opposite-sex experimenter using skin contact in a number of potentially high–intimate (face and chest) and low–intimate (arm and palm) locations. When peer-aged male laboratory agents touched heterosexual female participants on the face or chest the test subjects showed major (more than one degree Celsius) temperature responses on the face. What was surprising is that women’s facial temperature increased by one degree Celsius during any interaction with the male experimenter, using the thermal camera to record the observation. When other women laboratory agents did the tests on these same women subjects,  gender alone influenced the reaction of women, who showed no thermal response to interaction with other women.  Researchers hope to use this data to eventually develop a lie detector test for national security purposes. Studies show increases in temperature occur on the forehead when lying. “Thermal imaging offers new possibilities in the study of psychological responses to social interactions and is of particular interest in the context of mating signals.” Or maybe it will be used by social networks if infrared seeking cameras are incorporated into computing devices like your phone as a standard feature.

More information on the research can be found here.





June 15, 2014

Infrared Camera Helps Analyze Parts At Over Mach 5

Lumistar Corp Mach 5

Manchester University (Manchester, UK) researchers are using a thermal imaging camera to examine the performance of aerospace components in a wind tunnel. The knowledge gained by the wind tunnel tests will help designers of high-speed aircraft and re-entry space vessels that need to bring payloads to orbit and return to Earth.  The wind tunnel at the university is one of the few experimental facilities in Europe that can reach Mach numbers higher than 5. According to Professor Konstantinos Kontis, head of the Aerospace Research Group at Manchester University , the prolonged exposure to friction induced heat caused by the air flowing across the surface of an aircraft traveling at Mach 5 can be detrimental to the structural integrity of the material used in aircraft components. It is therefore important to test such components extensively before they are deployed in the field.

To capture thermal maps of the entire surface of the parts under test in the wind tunnel, the thermal imaging camera which contains an uncooled microbolometer detector that produces thermal images at a thermal sensitivity of 50mK (0.05°C), is located on top of the test chamber, looking in through a protective housing. This allows the camera to accurately map the thermal hot spots caused by the air friction, without being subjected to the force of high velocity air-flows. The full resolution can be captured at a frame rate of 50 fps, but it also provides high-speed windowing modes that allow the operator to increase the frame rate to 200 fps. The captured thermal footage along with it’s radiometric temperature data is analyzed with specialized software. “We use it to capture the data, define special regions of interest and export the temperature measurement strings to third party software for an in-depth analysis of the data,” says Dr. Erdem. On one end of the wind tunnel there is a chamber capable of containing pressurized air up to 15 bar, 15 times Earth’s regular atmospheric air pressure. At the other end is a vacuum tank which is brought to 1 milibar, one thousandth of regular atmospheric air pressure. In between the two is the test chamber where the test object is placed. As the pressurized air travels from the pressure chamber into the vacuum chamber, it passes the test object with a speed of about 6,000 kilometer per hour, similar to traveling at Mach 6 or approximately four thousand miles per hour at 50,000 feet (flight level 50), the highest altitude at which planes don’t lose air density. Velocity at sea level to obtain Mach 6 is 3,147 miles per hour. The difference in the velocity at different altitudes is due to the fact that the earth is spherical, so the amount of speed needed to cover a certain distance of the earth’s surface at a low altitude, is a lot lower than the amount needed to cover the same distance of the earth’s surface at a very high altitude.





April 15, 2014

Lumistar Proves to be #1 Leader in Shredder Cameras

Why A High Quality Shredder Camera?
Shredder operators operate their shredder ‘blind,’ due to steam, darkness and view obstruction. Operators often rely on vibration, RPM, and amp gauges to determine if they are about to jam or choke the shredder infeed. Frequently, out of fear, operators consistently underfeed in order to avoid jamming therefore losing valuable time and money. In the November 2013 issue of  the American Recycler, in an article entitled “Metal Shredders Face Stiff Competition”, Frank Goulding, member of the Board of Directors and Chair of the Shredder Committee for ISRI, reported:

“His [Goulding’s] shredders are running at roughly 60 percent capacity. They are focusing on lowering cost of production, trying to lean-out the cost of operating shredders and getting down the cost per ton. [He] is focusing on labor and practices, managing energy, looking at wear parts, evaluating equipment they are using to feed and support the shredder, looking downstream at other ways to separate metals and recovering more nonferrous from the residue.”

Our Solution!
(more…)





March 15, 2014

Technique with Thermal Camera Spots Nuclear Materials

Lumistar thermal hyper-spectral analysis

For two Brigham Young University professors, long wave infrared hyperspectral imaging holds the potential to spot from afar whether a site is being used to make nuclear weapons. Infrared cameras capture electromagnetic wavelengths beyond the color ‘rainbow red’ which is invisible to the human eye. Hyper-spectral infrared cameras capture this light in hundreds of narrow bands, as opposed to broadband which is a couple of bands or multispectral which is only 10s of bands. The human eye as well as traditional cameras see spectral broadbands of red-green-blue. Since different materials reflect or absorb infrared light, hyperspectral imaging divides the high-resolution spectra at each pixel. Materials in long-wave thermal infrared are emissive (rather than reflective) and therefore have a unique spectra. Certain objects leave ‘fingerprints’ across these imaging spectral divides known as spectral signatures, and enable the identification of materials that make up the scanned object. For example, a spectral signature of radioactive materials helps the CIA find illegal nuclear weapon production, as well as gases coming from factories or other banned chemicals. Identification of materials would be straightforward if those were the only signals bouncing back at the camera. But other incoming signals, such as the object’s temperature and the weather conditions, muddle the analysis and add noise to the material’s light signature. The novelty of the BYU study is that it directly separates the incoming signals to provide the material’s unique signature. The measured spectra are a convolution of the material spectra (emissivity), the black body temperature (Planck curve), other interacting environmental spectral sources, and measurement error.  One approach to material identification is temperature-emissivity separation (TES), which separates or deconvolves the material spectra from the temperature curve.  This algorithmic model is able to identify the material emissivity spectra, and cluster pixels into appropriate material groups. Imagine taking an infrared picture from above a city struck by an earthquake or tornado. In addition to spotting all the gas leaks, it could reveal the exact gases being leaked and their concentrations in different neighborhoods. There are also other classified areas this research could go.

Learn More Here


Filed under: Camera,Infrared,Lumistar,Technology,Thermal Imaging — Tags: — Lumistar @ 08:00



February 15, 2014

Infrared Camera Used On Players During Super Bowl

Lumistar NFL Infrared Camera

Super Bowl XLVIII fans might be interested to know they used a very sensitive infrared camera that showed how players’ for the Seahawks and Broncos body temperatures changed throughout the game. To achieve this goal a cooled midwave infrared camera with a 6x continuous zoom lens and a cooled detector were used. “I don’t know what story that tells, but it might make for some pretty cool pictures,” Eric Shanks, Fox Sports chief operating officer and executive producer, told the Television Critics Association in January. Fox Sports the host network for the Super Bowl touted the game as “the coldest and boldest Super Bowl ever” in its advertising weeks before the February 2 kickoff. Shanks said the pre-game timing will be altered slightly because of the temperature so people aren’t on the field standing around too long waiting for the players to come out. “We have spent a lot of time with the league going over contingency plans,” Shanks said, noting three NFL games on Fox this season were delayed because of weather. The first cold-weather Super Bowl was actually pretty warm at 53 degrees Fahrenheit. Temperatures for Sunday’s NFL title game at MetLife Stadium in East Rutherford, N.J. were 10 to 15 degrees above normal, and just nine degrees below the record high of 62 set in 1973. It’s not what league owners expected weeks before the game and even as far back as 2010 when the stadium contract was awarded. Snow, ice and frigid temperatures were expected, and they feared the temperatures would detract from the game normally held in outdoor warm-weather cities or in a domed stadium. The Seahawks won 43-8.

Learn More Here


Filed under: Camera,Company,Infrared,Lumistar,Technology,Thermal Imaging — Tags: — Lumistar @ 08:00



January 15, 2014

Coldest Spot On Earth Found By Thermal Camera

Lumistar coldest spot on eath

If one had to guess where the coldest place on Earth is, if you guessed Antarctica you’d be right. The coldest place on Earth has been measured by a space-borne high resolution thermal infrared camera sensor on the recently launched satellite named Landsat-8. On August 10, 2010 during the 24hr dark Antarctic winter months, it was recorded to be a bitter -135.8 Fahrenheit/-93.2 Celsius at a latitude of 81.8 degrees South and a longitude of 59.3 degrees East, at an elevation of about 3,900 meters. It turns out there are many cold spots in Antarctica “strung out like pearls” at each peak along the ridges. The satellite’s sophisticated thermal camera sensor made its way through the dry and clear air that surrounds the interior of Antarctica all the way to the ice’s surface where the temperature was taken. Traditionally, the temperature has to be taken in the air for it to count in the world record books, but scientists are certain the air above the surface is cold enough to beat the current record in 1983 by the Russians also in Antarctica, by at least -4 degrees Celsius/-25 Fahrenheit. In fact, the thermal camera is at such high resolution scientists aren’t sure how to fully calibrate it’s sensor until it has more time to understand all the data Landsat-8 is giving them. Scientists speculate it is in fact be even colder in these spots by several degrees. They hope to get some ground based instruments capable of air temperature there in order to take a measurement and secure the world record. By comparison, the coldest temperature recorded in Alaska and Siberia is about -43/ -45F, and the summit of Greenland being -63C/ -81F. The lowest temperature recorded on Earth’s moon is that of -238C/ -396F.

In case you were wondering if this high resolution thermal sensor also happen to record the hottest place on earth — it did. The hottest surface temperature on earth recorded by Landsat-8 was in Dasht-e Lut salt desert in southeast Iran, where it reached +70.7 Celsius/+159.3 Fahrenheit in 2005.

More Info


Filed under: Camera,Infrared,Lumistar,Technology,Thermal Imaging — Tags: , — Lumistar @ 08:00



« Newer PostsOlder Posts »