Like us on Facebook!





Company Blog

LUMISTAR INFRARED IMAGING NEWS

By Lumistar's Chief Scientist

August 15, 2016

Infrared Shows Jupiter’s Great Red Spot Is Hot

Update 9/2/16: Jupiter’s Full Scan in Infrared!

A recent infrared scan of Jupiter shows it’s Great Red Spot to be the hottest spot on the planet – by a significant amount. The Great Red Spot has been churning for at least 150 years and is currently shrinking. What was once 25,000 miles wide in the 1800s is now 10,000 miles wide. The GRS was first discovered by Galileo in the 1600s. The color has also changed over time. It currently spans the distance equal to three Earth-diameters. It is comparable by scientists to a Earth hurricane, and it takes six days to complete one spin. The lower atmosphere of Jupiter is very hot as it’s a gas giant composed of mostly hydrogen and helium, much like the sun. The planet releases more heat than it receives from the sun as gravity compresses its mass and slowly shrinks the planet as it spends its fuel, much like a star. This is why most scientists believe Jupiter, with its massive gaseous size, could in fact be a star that failed to ignite.

The mystery of this story begins with a 1973 Pioneer 10 spacecraft that did a flyby and measured Jupiter’s temperature for the first time. Perplexing scientists, it showed the upper atmosphere is nearly 1000 degrees Fahrenheit, when it was predicted to be -100 degrees based on the lack solar heating from the sun, largely because the planet is about fives time further from the sun than Earth. A theory was created that the heat might be coming from Jupiter’s gargantuan auroras, the glow of charged particles accelerated along the magnetic field into the north and south polar regions , which were indeed even hotter at 1700 degrees Fahrenheit. But scientists have been confounded how could that heat be distributed north and south, causing a massive temperature rise in the middle, when the winds of the planet go east and west as seen in Jupiter’s tell tale bands.

James O’Donoghue, a research scientist at Boston University using a very small travel grant, used observations on the SpeX instrument, mounted on the NASA Infrared Telescope Facility in Hawaii to view Jupiter’s heat. Astronomers measure the temperature of a planet by observing the non-visible, infrared (IR) light it emits. O’Donoghue and his team think they have finally cracked the code. He discovered, using an infrared spectrometer observing the rare earth H3+ molecule, that the temperature of the upper atmosphere , 350 to 600 miles above the giant swirling storm, averages 2,500 degrees Fahrenheit!

Scientists in 1973 didn’t believe there was a connection between the Jovian low and high altitudes because of the great distance within the atmosphere of the planet. This temperature discovery shows this is untrue as a new theory has emerged that they are indeed connected in an unexpected manor. The theory is this GRS hotspot is created by thunderous soundwaves “breaking” in the thin upper reaches of the atmosphere. The gravity ‘shock’ waves from the energy of the lower storm are traveling upward up until they reach their end and snap like ocean waves hitting the shore creating a massive amount of sound and kinetic energy that heats the upper atmosphere.

“There is some evidence in Earth’s atmosphere, above storms and above features such as mountains – the Andes mountains in fact – that there are acoustic waves emanating from them, and that they propagate up into the atmosphere and cause heating there,” O’Donoghue said. They described their findings online July 27 in Nature


Filed under: Infrared,Technology — Tags: , , , , , , , — Lumistar @ 08:09



October 15, 2013

Pink Alien Planet Photographed With Infrared Camera

Lumistar Blog

Photo: Glowing a dark magenta, this image is an artist’s representation of the alien world. Click picture for greater detail. Credit: NASA’s Goddard Space Flight Center/S. Wiessinger

Astronomers have snapped a photo, using NIR cameras, of a pink alien world that’s the smallest (lowest-mass) exoplanet yet found around a star like our own sun. The proper name for this alien planet is GJ 504b, is cold with few clouds and it likely has a dark magenta hue, infrared data from the Subaru Telescope in Hawaii revealed. “If we could travel to this giant planet, we would see a world still glowing from the heat of its formation with a color reminiscent of a dark cherry blossom, a dull magenta,” study researcher Michael McElwain, of NASA’s Goddard Space Flight Center in Greenbelt, Md., said in a statement from the space agency.

Although the gas planet is the smallest ever found around a sun-like star, it’s still huge — about four times the size of our solar system’s gas giant Jupiter. It lies nearly 44 Earth-sun distances from its central star, far beyond the system’s habitable zone. The newly found ‘pink planet’ has cause for alarm for scientists as it challenges common held beliefs in traditional models on how planets are formed due to its size and massive distance from it’s host star.

More: http://www.space.com/

Though it is the smallest alien world caught on camera around a sun-like star, the gas planet around GJ 504 is still huge — about four times the size of Jupiter. It lies nearly 44 Earth-sun distances from its central star, far beyond the system’s habitable zone, and it has an effective temperature of about 460 degrees Fahrenheit (237 Celsius), according to the researchers’ estimates. – See more at: http://www.space.com/22265-small-alien-planet-direct-photo.html#sthash.5nm6dAjg.dpuf
Though it is the smallest alien world caught on camera around a sun-like star, the gas planet around GJ 504 is still huge — about four times the size of Jupiter. It lies nearly 44 Earth-sun distances from its central star, far beyond the system’s habitable zone, and it has an effective temperature of about 460 degrees Fahrenheit (237 Celsius), according to the researchers’ estimates. – See more at: http://www.space.com/22265-small-alien-planet-direct-photo.html#sthash.5nm6dAjg.dpuf